Quantum Mechanics I (PHYS 3143A) Fall 2020
Test 2
Name:

Problem 1
A spin-2 particle is in the state

$$
|\psi\rangle=\frac{1}{\sqrt{3}}|2,-2\rangle_{z}+\frac{1}{\sqrt{3}}|2,-1\rangle_{z}+\frac{1}{\sqrt{3}}|2,2\rangle_{z}
$$

a) (10 points) Evaluate the uncertainty ΔS_{z}

$$
\begin{aligned}
& \left\langle S_{z}\right\rangle=(-2 \hbar) \cdot \frac{1}{3}+(-\hbar) \cdot \frac{1}{3}+(2 \hbar) \cdot \frac{1}{3}=-\frac{2 \hbar}{3}-\frac{\hbar}{3}+\frac{2 \hbar}{3}=-\frac{\hbar}{3} \\
& \left\langle S_{z}^{2}\right\rangle=(-2 \hbar)^{2} \cdot \frac{1}{3}+(-\hbar)^{2} \cdot \frac{1}{3}+(2 \hbar)^{2} \cdot \frac{1}{3}=\frac{4 \hbar^{2}}{3}+\frac{\hbar^{2}}{3}+\frac{4 \hbar^{2}}{3}=\frac{9 t^{2}}{3}=3 \hbar^{2} \\
& \Delta S_{z}=\sqrt{\left\langle S_{z}^{2}\right\rangle-\left\langle S_{z}\right\rangle^{2}}=\sqrt{3 t^{2}-\left(-\frac{\hbar}{3}\right)^{2}}=\sqrt{\frac{27 t^{2}}{9}-\frac{t^{2}}{9}}=\frac{\hbar}{3} \sqrt{26}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{S}_{+}=\hat{S}_{x}+i \hat{S}_{y} \\
& \hat{S}_{y}=\frac{1}{2 i}\left(\hat{S}_{+}-\hat{S}_{-}\right) \\
& \left.\hat{S}_{+} \mid s, m\right)=\sqrt{s(s+1)-m(m+1)} \mid{ }^{2}(m+1) \\
& \hat{s}_{-}=\hat{S}_{x}-i \hat{S}_{y} \\
& \hat{S}_{+}-\hat{S}_{-}=2 i \hat{S}_{b} \\
& \left.\left.\hat{S}_{-} \mid s_{1}, m\right)=\sqrt{s(s+1)-m(m-1)} \hbar \mid S_{, m-1}\right) \\
& \text { b) (25 points) Calculate }\left\langle\hat{S}_{y}\right\rangle \text { and }\left\langle\hat{S}_{y}^{2}\right\rangle \text { for this state and evaluate the uncertainty } \Delta S_{y} \text {. } \\
& \text { Note: determining the matrix representation of } \hat{S}_{y} \text { operator is not necessary in this } \\
& \text { problem. } \\
& \hat{S}_{y}|\psi\rangle=\frac{1}{2 i}\left(\hat{S}_{+}-\hat{S}_{-}\right)\left(\frac{1}{\sqrt{3}}|2,-2\rangle+\frac{1}{\sqrt{3}}|,-1\rangle+\frac{1}{\sqrt{3}}|2,2\rangle\right)= \\
& =\frac{1}{2 i}\left(\frac{1}{\sqrt{3}} \frac{\sqrt{2(2+1)-(-2)(-2+1)}}{2} \hbar|2,-1\rangle+\frac{1}{\sqrt{3}} \frac{\sqrt{2(2+1)-(-1)(-1+1)}}{\sqrt{6}} \hbar|2,0\rangle+\underset{\sqrt{1}}{2} \sqrt{2(2+1)-2(2)+1 / 12, ?)} 0\right. \\
& \left.-\frac{1}{\sqrt{3}} \frac{\sqrt{2(2+1)-(-1)(-1-1)}}{2} \hbar|2,-2\rangle-\frac{1}{\sqrt{3}} \frac{\sqrt{2(2+1)-2(2-1)}}{2} \hbar|2,1\rangle\right)= \\
& =\frac{1}{2 i}\left(\frac{2}{\sqrt{3}} \hbar|2,-1\rangle+\frac{\sqrt{6}}{\sqrt{3}} \hbar|2,0\rangle-\frac{2}{\sqrt{3}} \hbar|2,-2\rangle-\frac{2}{\sqrt{3}} \hbar|2,1\rangle=\right. \\
& \hat{s}_{y}\left|+\underline{2} \frac{\hbar}{2 i \sqrt{3}}(2|2,-1\rangle+\sqrt{6}|2,0\rangle-2|2,-2\rangle-2|2,1\rangle)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\hbar}{2 i \sqrt{3} \cdot \sqrt{3}}(-2+2)=0 \\
& \left\langle S_{y}^{2}\right\rangle=\left(\langle\psi| \hat{S}_{y}\right)\left(\hat{S}_{y}|\psi\rangle\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\hbar^{2}}{4 \cdot 3}(4+6+4+4)=\frac{18 \hbar^{2}}{4 \cdot 3}=\frac{3 \hbar^{2}}{2}
\end{aligned}
$$

$$
\Delta S_{y}=\sqrt{\left\langle S_{y}^{2}\right\rangle-\left\langle S_{y}\right\rangle^{2}}=\sqrt{\frac{3 \hbar^{2}}{2}-0}=\hbar \sqrt{\frac{3}{2}}
$$

Test 2_sample

Quantum Mechanics I (PHYS 3143A) Fall 2019
Test 2
Name:

$$
\hat{S_{z}}|S, m\rangle=\hbar m|S, m\rangle
$$

$$
\hat{S}^{2}|S, m\rangle=S(S+1) \hbar^{2}|S, m\rangle
$$

$$
|s, m\rangle
$$

Problem 1
A spin-3 particle is in the state $\underbrace{|\psi\rangle}=\left(\frac{1}{\sqrt{2}}\right)|3,1\rangle+\frac{1}{\sqrt{2}}|3,2\rangle$.
a) (10 points) Calculate $\left\langle S_{z}\right\rangle$ and $\left\langle S_{z}^{2}\right\rangle$ for this state and evaluate the uncertainty ΔS_{z}

$$
\begin{aligned}
& \left\langle S_{z}\right\rangle=\hbar \cdot \frac{1}{2}+2 \hbar \cdot \frac{1}{2}=\left(\frac{3 \hbar}{2}\right) \\
& \left\langle S_{z}^{2}\right\rangle=\hbar^{2} \cdot \frac{1}{2}+(2 \hbar)^{2} \cdot \frac{1}{2}=\frac{\hbar^{2}}{2}+\frac{4 \hbar^{2}}{2}=\frac{5 \hbar^{2}}{2} \\
& \Delta S_{z}=\sqrt{\left(S_{z}^{2}\right\rangle-\left\langle S_{z}\right\rangle^{2}}=\sqrt{\frac{5 \hbar^{2}}{2}-\left(\frac{3 \hbar}{2}\right)^{2}}=\sqrt{\frac{5 \hbar^{2} \cdot 2}{2} \cdot 2} \frac{9 \hbar^{2}}{4}=\sqrt{\frac{\hbar^{2}}{4}}=\left(\frac{\hbar}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{S}_{x}=\frac{1}{2}\left(\hat{S}_{+}+\hat{S}_{-}\right) \\
& \hat{S}_{y}=\frac{1}{2 i}\left(\hat{S}_{+}-\hat{S}_{-}\right)
\end{aligned}
$$

$$
\hat{S_{+}}|S, m\rangle=\sqrt{S(S+1)-m(m+1)} \hbar|S, m+1\rangle
$$

$$
\hat{S}_{-}|s, m\rangle=\sqrt{s(s+1)-m(m-1)} \hbar|s, m-1\rangle
$$

b) (35 points) Calculate $\left\langle\left\langle S_{x}\right\rangle\right.$ and $\left\langle S_{x}^{2}\right\rangle$ for this state and evaluate the uncertainty ΔS_{x}. Note: determining the matrix representation of \hat{S}_{x} operator is not necessary in this problem.

$$
\begin{aligned}
& \hat{S}_{x}|\psi\rangle=\frac{1}{2}\left(\hat{S}_{+}+\hat{S}_{-}\right)\left(\frac{1}{\sqrt{2}}|3,1\rangle+\frac{1}{\sqrt{2}}|3,2\rangle\right)=\frac{1}{2}\left[\frac{1}{\sqrt{2}} \frac{\sqrt{3(3+1)-\left(\frac{(1+1)}{2}\right.} \hbar|3,2\rangle+}{12}+\right. \\
& \left.+\frac{1}{\sqrt{2}} \sqrt{\frac{3(3+1)-2(2+1)}{12}} \hbar|3,3\rangle+\frac{1}{\sqrt{2}} \frac{\sqrt{3(3+1)-1(1-1))}}{12} \hbar|3,0\rangle+\frac{1}{\sqrt{2}} \frac{\sqrt{3(3+1)} \frac{-2(2-1)}{2}}{\frac{1}{2}} \hbar|3,1\rangle\right]= \\
& \hat{\gamma}_{\gamma_{x}}|+\rangle=\frac{1}{2}[\sqrt{5} \hbar|3,2\rangle+\sqrt{3} \hbar|3,3\rangle+\sqrt{6} \hbar|3,0\rangle+\sqrt{5} \hbar|3,1\rangle] \\
& \left\langle S_{x}\right\rangle=\langle\psi| \underbrace{\hat{S}_{x}|\psi\rangle}=\left(\frac{1}{\sqrt{2}}\langle 3,1|+\frac{1}{\sqrt{2}}\langle 3,2|, \frac{\hbar}{2}(\sqrt{5}|3,2\rangle+\sqrt{3}|3,3\rangle+\sqrt{6}|3,0\rangle+\sqrt{5}|3,1\rangle)=\right. \\
& =\frac{\hbar}{2} \cdot \frac{1}{\sqrt{2}} \cdot \sqrt{5}+\frac{\hbar}{2} \cdot \frac{1}{\sqrt{2}} \cdot \sqrt{5}=\hbar \sqrt{\frac{5}{2}} \\
& \left\langle S_{x}^{2}\right\rangle=\left(\langle\psi| \hat{S}_{x}\right) \cdot\left(\hat{S}_{x}|\psi\rangle\right)= \\
& \left(\frac{\hbar}{2}\right)\left(\sqrt { 5 } \left\langle3,21+\sqrt{3}\left\langle 3,31+\sqrt{6}\langle 3,01+\sqrt{5}\langle 3,1)) \cdot \frac{t}{2}(\sqrt{5}(3,2\rangle+\sqrt{3}|3,3\rangle+\sqrt{6}(13,0\rangle+\sqrt{5}(3,1\rangle)=\right.\right.\right. \\
& =\frac{\hbar^{2}}{4}(5+3+6+5)=\frac{19 t^{2}}{4} \\
& \Delta S_{x}=\sqrt{\left\langle S_{x}^{2}\right\rangle-\left\langle S_{x}\right\rangle^{2}}=\sqrt{\frac{19 \hbar^{2}}{4}-\left(\hbar \sqrt{\frac{5}{2}}\right)^{2}}=\sqrt{\frac{19 \hbar^{2}}{4}-\frac{5 \hbar^{2} \cdot 2}{2 \cdot 2}}= \\
& =\sqrt{\frac{9 t^{2}}{4}}=\frac{3 t}{2}
\end{aligned}
$$

Problem 2.
The Hamiltonian for a spin- 1 particle is represented by the matrix

$$
\widehat{H}_{\overline{S_{z} \text { basis }}} \hbar \omega_{0}\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

A particle is initially in the state

a) (40 points) Determine the state of the system- $|\psi(t)\rangle$ at time t in S_{Z} basis.

1) Find eigenvalues of \hat{H} :

$$
\begin{aligned}
& =(1-\lambda)(1-\lambda)(2-\lambda)-2 \cdot 2(2-\lambda)=0 \\
& (1-\lambda)^{2}(2-\lambda)-4(2-\lambda)=0 \\
& (2-\lambda)\left((1-\lambda)^{2}-2^{2}\right)=0 \\
& (2-\lambda)(1-\lambda-2)(1-\lambda+2)=0 \\
& (2-\lambda)(-1-\lambda)(3-\lambda)=0 \\
& \lambda=2,-1,3
\end{aligned}
$$

Eigenvalues of \hat{H} :
$2 \hbar \omega_{0},-\hbar \omega_{0}, 3 \hbar \omega_{0}$
2) Find eigenstates of \hat{H} :
$\left.12 \star \omega_{0}\right\rangle: \quad \lambda=2$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1-2 & 2 & 0 \\
2 & 1-2 & 0 \\
0 & 0 & 2-2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c^{*}(0,0,1) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=1 \\
& c^{*} c \cdot(0+0+1)=1 \\
& -|c|^{2}=1 \\
& \left.1-\hbar \omega_{0}\right\rangle \quad \lambda=-1 \\
& c=1
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
1-(-1) & 2 & 0 \\
2 & 1-(-1) & 0 \\
0 & 0 & 2-(-1)
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{gathered}
\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left|x_{1}\right| \leq|1|
\end{gathered}
$$

$$
\begin{aligned}
& c^{*}(1,-1,0) c\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=1 \\
& c^{*} c(1+1+0)=1 \\
& |c|^{2}=\frac{1}{2} \\
& c=\frac{1}{\sqrt{2}}
\end{aligned}
$$

3) Express $|\psi(0)\rangle$ in the basis of eigenstates of \hat{H} :

$$
\begin{aligned}
& |\psi(0)\rangle=\left|2 \hbar \omega_{0}\right\rangle \underbrace{\left\langle 2 \hbar \omega_{0}\right| \psi(0)}_{0}\rangle+\mid-\hbar \omega_{0}) \underbrace{\left\langle-\hbar \omega_{0} \mid \psi(0)\right\rangle}_{\frac{1}{\sqrt{2}}}+\left|3 \hbar \omega_{0}\right\rangle\langle\underbrace{\left\langle 3 \hbar \omega_{0} \mid \psi(0)\right\rangle}_{\frac{1}{\sqrt{2}}} \\
& \left\langle 2 \hbar \omega_{0} \mid \psi(0)\right\rangle=(0,0,1)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0 \\
& \left\langle-\hbar \omega_{0} \mid \psi(0)\right\rangle=\left(\frac{1}{\sqrt{2}}(1,-1,0)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\right. \\
& \left\langle 3 \hbar \omega_{0} \mid \psi(0)\right\rangle=\frac{1}{\sqrt{2}}(1,1,0)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}} \\
& |\psi(0)\rangle=\frac{1}{\sqrt{2}}\left|-\hbar \omega_{0}\right\rangle+\frac{1}{\sqrt{2}}\left|3 \hbar \omega_{0}\right\rangle
\end{aligned}
$$

4) Evolve $|\Psi(0)\rangle$

$$
|\Psi(t)\rangle=\frac{1}{\sqrt{2}} e^{\frac{-i\left(-\hbar \omega_{0}\right) t}{\hbar}\left|-\hbar \omega_{0}\right\rangle+\frac{1}{\sqrt{2}} e^{\frac{-i\left(3 \hbar \omega_{0}\right) t}{\hbar}}\left|3 \hbar \omega_{0}\right\rangle} \quad|E(t)\rangle=e^{\hbar}|E(0)\rangle
$$

5) Switch to original basis (S_{7} basis)

$$
\begin{aligned}
& |\psi(t)\rangle \xrightarrow[S_{7 \text { basis }}]{\text { 5) Switch to }} \frac{1}{\sqrt{2})} e^{i \omega_{0} t} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\frac{1}{\sqrt{2}} e^{-3 i \omega_{0} t} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\frac{1}{2}\binom{e^{i \omega_{0} t}+e^{-3 i \omega_{0} t}+e^{-3 i \omega_{0} t}}{-e^{-i \omega_{0} t}}= \\
& =\left(\frac{e^{2 i \omega_{0} t}+e^{-2 i \omega_{0} t}}{2}\left(\frac{\left.-e^{2 i \omega_{0} t}+e^{-2 i \omega_{0}}\right)}{2(-i)}\right)(i)=\binom{\cos \left(2 \omega_{0} t\right)}{-i \cdot \sin \left(2 \omega_{0} t\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 0 & 2-(-1)
\end{array}\left|\left|x_{3}\right|\right| \begin{array}{llll}
0
\end{array}|\quad| \begin{array}{lll}
0 & 0 & 3 / 1 x_{3} / 10
\end{array}\right. \\
& 2 x_{1}+2 x_{2}=0 \quad \Rightarrow \quad x_{1}=-x_{2} \\
& 3 x_{3}=0 \quad \Rightarrow x_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3 } \omega \omega\rangle \quad \lambda=3 \\
& \left(\begin{array}{ccc}
1-3 & 2 & 0 \\
2 & 1-3 & 0 \\
0 & 0 & 2-3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
-2 & 2 & 0 \\
2 & -2 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& -2 x_{1}+2 x_{2}=0 \quad \Rightarrow \quad x_{1}=x_{2} \\
& -x_{3}=0 \quad \Rightarrow \quad x_{3}=0 \quad\left|3 \hbar \omega_{0}\right\rangle \xrightarrow[S_{2} \text { basis }]{ }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =e \quad\binom{\frac{\left(-e^{2 i \omega_{0} t}+e^{-2 i \omega_{0}} t\right)(i)}{2(-i)}}{0}=(e \cdot)\binom{-i \cdot \sin \left(2 \omega_{0} t\right)}{0} \\
& |\psi(t)\rangle \xrightarrow[s_{7} \text { ba sis }]{ }\left(\begin{array}{c}
\cos \left(2 \omega_{0} t\right) \\
-i \cdot \sin \left(2 \omega_{0} t\right) \\
0
\end{array}\right)
\end{aligned}
$$

b) (15 points) Calculate the expectation value $\left\langle S_{X}\right\rangle$ as a function of time.

$$
\begin{aligned}
& \hat{S}_{x} \underset{S_{z} \text { basis }}{ } \frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \left\langle S_{x}\right\rangle=\langle\psi(t)| \hat{S}_{x}|\psi(t)\rangle=\left(\cos \left(2 \omega_{0} t\right), i \sin \left(2 \omega_{0} t\right), 0\right) \frac{t}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\cos \left(2 \omega_{0} t\right) \\
-i \sin \left(2 \omega_{0}\right) \\
0
\end{array}\right) \\
& =\left(\cos \left(2 \omega_{0} t\right), i \sin \left(2 \omega_{0} t\right), 0\right) \cdot \frac{\hbar}{\sqrt{2}}\left(\begin{array}{l}
-i \cdot \sin \left(2 \omega_{0} t\right) \\
\cos \left(2 \omega_{0} t\right) \\
-i \sin \left(2 \omega_{0} t\right)
\end{array}\right)= \\
& =\frac{\hbar}{\sqrt{2}}(\underbrace{\cos \left(2 \omega_{0} t\right)-(-1) \sin \left(2 \omega_{0} y\right)}+\underbrace{\left.\left.i \sin \left(2 \omega_{0} t\right) \cdot \cos \left(2 \omega_{0} t\right)+0\right)\right)} \\
& =0 \text {. } \\
& \left\langle S_{y}\right\rangle=\langle\psi(t)| \hat{S}_{y}|\psi(t)\rangle=\left(\cos \left(2 \omega_{0} t\right), i \cdot \sin \left(2 \omega_{0} t\right), 0\right) \cdot \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & - \\
0 & i & 0
\end{array}\right)\left(\begin{array}{c}
\cos \left(2 \omega_{0} t\right) \\
-i \sin \left(2 \omega_{0} r\right) \\
0
\end{array}\right)= \\
& =\left(\cos \left(2 \omega_{0} t\right), i \sin \left(2 \omega_{0} t\right), 0\right) \cdot \frac{\hbar}{\sqrt{2}}\left(\begin{array}{c}
-\sin \left(2 \omega_{0} t\right) \\
i \cos \left(2 \omega_{0} t\right) \\
\sin \left(2 \omega_{0} t\right)
\end{array}\right)= \\
& =\frac{t}{\sqrt{2}}\left(-\cos \left(2 \omega_{0} 1\right) \cdot \sin \left(2 \omega_{0} 1\right)-\sin \left(2 \omega_{0} t\right) \cos \left(2 \omega_{0} 1\right)\right)= \\
& =-\frac{\hbar}{\sqrt{2}} \cdot \underbrace{2 \cos \left(2 \omega_{0} t\right) \cdot \sin \left(2 \omega_{0} t\right)}_{\sin \left(4 \omega_{0} t\right)}=-\frac{t}{\sqrt{2}} \sin \left(4 \omega_{0} t\right)
\end{aligned}
$$

